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Summary

Autoimmunity occurs when the immune system recognizes and attacks host
tissue. In addition to genetic factors, environmental triggers (in particular
viruses, bacteria and other infectious pathogens) are thought to play a major
role in the development of autoimmune diseases. In this review, we (i)
describe the ways in which an infectious agent can initiate or exacerbate
autoimmunity; (ii) discuss the evidence linking certain infectious agents to
autoimmune diseases in humans; and (iii) describe the animal models used to
study the link between infection and autoimmunity.
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Introduction

There are more than 80 identified autoimmune diseases [1].
Multiple factors are thought to contribute to the develop-
ment of immune response to self, including genetics, age
and environment. In particular, viruses, bacteria and other
infectious pathogens are the major postulated environmen-
tal triggers of autoimmunity.

Multiple arms of the immune system may be involved in
autoimmune pathology. Antigens are taken up by antigen-
presenting cells (APCs) such as dendritic cells (DCs) and
processed into peptides which are loaded onto major histo-
compatibility complex (MHC) molecules for presentation to
T cells via clonotypic T cell receptors (TCRs). Cytolytic T
cells (Tc, activated by MHC Class I on APC) can directly lyse
a target, while T helper cells (Th, activated by MHC class II)
release cytokines that can have direct effects or can activate
macrophages, monocytes and B cells. B cells themselves have
surface receptors that can bind surface antigens. Upon
receiving signals from Th cells, the B cell secretes antibodies
specific for the antigens. Antibody may bind its specific
target alone or may bind to and activate macrophages simul-
taneously via the Fc receptor.

There are multiple mechanisms by which host infection by
a pathogen can lead to autoimmunity (Fig. 1). The pathogen
may carry elements that are similar enough in amino acid
sequence or structure to self-antigen that the pathogen acts
as a self-‘mimic’. Termed ‘molecular mimicry’, T or B cells
that are activated in response to the pathogen are also cross-
reactive to self and lead to direct damage and further activa-
tion of other arms of the immune system. The pathogen may
also lead to disease via epitope spreading. In this model the
immune response to a persisting pathogen, or direct lysis by
the persisting pathogen, causes damage to self-tissue. Anti-

gens released from damaged tissue are taken up by APCs,
and this initiates a self-specific immune response. ‘Bystander
activation’ describes an indirect or non-specific activation of
autoimmune cells caused by the inflammatory environment
present during infection. A domino effect can occur, where
the non-specific activation of one arm of the immune system
leads to the activation of other arms. Lastly, infection may
lead autoimmunity through the processing and presentation
of ‘cryptic antigens’. In contrast to dominant antigenic deter-
minants, subdominant cryptic antigens are normally invis-
ible to the immune system. The inflammatory environment
that arises after infection can induce increased protease pro-
duction and differential processing of released self-epitopes
by APCs.

In this review, we discuss the evidence available for the
involvement of specific pathogens in the initiation or exac-
erbation of representative autoimmune diseases. As will be
mentioned, there is evidence for the involvement of different
arms of the immune systems by many mechanisms, in both
human disease and in animal models.

Coxsackievirus B

Coxsackievirus B (CVB) is the most common cause of infec-
tious myocarditis. Infectious virus and viral RNA can be
isolated from patients’ hearts [2–4]. CVB3 can cause myo-
carditis in mice; in most mouse strains, the virus titre peaks
at day 4 post-infection and is undetectable after 14 days [5].
The chronic stage of the disease (day 28 onwards) is charac-
terized by mononuclear cell infiltration into the myocar-
dium and the production of antibodies to cardiac myosin
which, because of the absence of virus, argues for autoim-
munity as the pathophysiological mechanism at this stage of
disease. In vitro, cardiac myocytes can be infected and lysed
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Fig. 1. Mechanisms by which pathogens may cause autoimmunity. (a) Molecular mimicry occurs when pathogen-derived epitopes are cross-reactive

with self-derived epitopes. Pathogen-derived epitopes are taken up by antigen-presenting cells (APCs) and presented to cytolytic T cells (Tc) via

major histocompatibility complex (MHC) class I or to helper T cells (Th) via MHC class II. T cells activated by pathogenic epitopes that are

cross-reactive with self-epitopes can then damage self-tissue via lysis (Tc) or release of cytokines (Th). Cytokines released by activated Th cells can

activate macrophages (Mf) or provide help to B cells. Pathogen-derived surface antigens are recognized by a B cell’s B cell receptor (BCR), which

triggers the secretion of antibodies. These antibodies can cause damage by binding to cross-reactive epitopes on the surface of tissues and disrupting

tissue function, or the Fc portion of the antibody can bind simultaneously to the Fc receptor (FcR) on Mf; this will trigger the Mf to produce

tissue-damaging cytokines. Damaged tissue will release more cross-reactive antigens, which will be taken up by APCs, propagating further damage.

(b) In epitope spreading, the immune response to a persisting pathogen, or direct lysis of self-tissue by the persisting pathogen, causes damage to

self-tissue. Antigens released from damaged tissue are taken up by APCs, and this initiates an immune response directed towards self-antigens. (c) In

bystander activation, the various parts of the immune system respond to the invading pathogens. The inflammatory environment triggered by this

response damages self-tissue in an antigen non-specific manner, and in addition triggers non-specific activation of immune cells. (d) In contrast to

dominant antigenic determinants, subdominant cryptic antigens are normally invisible to the immune system. The inflammatory environment that

arises after infection can induce increased protease production and differential processing of released self-epitopes by APCs.
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by the virus [6] and CVB infection causes myocardial
destruction in SCID mice (which lack T and B cells),
showing that the virus can directly infect and lyse cells [7,8].
This damage may lead to autoimmunity via epitope
spreading. In mice, virus-specific antibodies arise soon after
infection, followed by antibodies to several cardiac proteins
such as myosin, tropomyosin and actin [9–11]. T cells also
play an important role, as T cells can transfer disease to naive
recipients and athymic or T cell-depleted mice exhibit
reduced disease following infection [12–15]. Depletion of
CD8+ T cells increases myocarditis in infected mice, showing
the importance of this subset in mice [16]. Neutralizing anti-
mCVB3 monoclonal antibodies (mAb), which could cause
cardiac pathology when transferred into mice, were also
cross-reactive to cardiac myosin and surface epitopes on
cardiac fibroblasts, suggesting mimicry as a possible mecha-
nism [17,18]. Similarly, T cell clones from infected mice
proliferate in response to cardiac myosin [19,20]. Some
studies have failed to detect cross-reactive T or B cells or
mimic sequences within the virus capsid [21]. The same
group found that tumour necrosis factor (TNF)-a or inter-
leukin (IL)-1 treatment of genetically resistant mice could
render them susceptible to cardiac disease, suggesting that
bystander activation may be a mechanism of auto-
immunity. CVB3 infection increases ubiquitinization of cel-
lular proteins [9–11], and this increased cellular degradation
may also lead to the release of cryptic epitopes. While these
studies show that numerous autoimmune mechanisms can
lead to cardiomyopathy in infected mice, it remains uncer-
tain if autoimmunity accounts for the pathology seen in
humans [22–24].

Streptococcus pyogenes: group A strepcococcus

Infection with S. pyogenes can lead to inflammation of the
heart, and the involvement of lymphocytes in cardiac pathol-
ogy has been suggested for some time [25,26]. Studies have
shown that bacterial materials and DNA can persist in
host tissue for some years after infection, so it is possible
that ongoing immunity against the bacteria may lead to
bystander damage to the organ [23]. However, it is accepted
most predominantly that the autoimmune reaction is caused
by molecular mimicry. Myosin has been identified as the
dominant autoantigen in the heart, and myosin-reactive
mAb derived from patients with acute rheumatic fever were
shown be cross-reactive to both M protein (the major
virulence factor of group A streptococci) [27] and the
streptococcus carbohydrate epitope N-acetylglucosamine
[28]. Similar cross-reactivity was seen with mAb derived
from mice immunized with S. pyogenes membranes [29,30].
Cross-reactive mAb has been found to other heart proteins
such as tropomyosin and laminin [31,32]. T cell clones from
heart lesions of rheumatic heart disease patients, as well as
their peripheral blood mononuclear cells (PBMC), can
recognize simultaneously streptococcal M protein and heart

tissue-derived proteins such as myosin, tropomyosin and
laminin [33–36]. BALB/c mice immunized with human
cardiac myosin developed T cells cross-reactive with M
protein [37], and T cell lines from rats immunized with M
protein were also cross-reactive with myosin [38]. These
M protein-immunized rats develop cardiac lesions, present-
ing a good argument that mimicry is a major mechanism of
pathology in human rheumatic heart disease. Cardiac lesions
can also be induced in rabbits infected with the bacteria [39]
and mice immunized with bacterial components [40].

Although somewhat controversial [41,42], infection with
S. pyogenes has also been associated with the development of
movement and behavioural disorders such as Sydenham
chorea, Tourette’s syndrome and obsessive–compulsive dis-
order [43,44]. Patients with these disorders often have anti-
bodies to the basal ganglia in the brain, and molecular
mimicry between basal ganglia and S. pyogenes-derived pro-
teins remains the major postulated mechanism of disease
induction. Rabbits immunized with streptococcal M protein
developed antibodies cross-reactive with several human
brain proteins, and synthetic M-derived peptides inhibited
brain-cross-reactive antibodies from the serum of a patient
with Sydenham chorea [45]. An early paper demonstrated
antibody cross-reactivity between S. pyogenes membrane and
neuronal cytoplasm in patients with Sydenham chorea [46].
Using serum, cerebrospinal fluid (CSF) and mAb derived
from Sydenham chorea patients, dual-specific antibodies
were found that react with both the immunodominant car-
bohydrate epitope on S. pyogenes cell wall (GlcNAc) and with
lysoganglioside GM1 on the surface of neurones [47]. The
same group demonstrated that GlcNAc-reactive antibodies
from the sera of patients with paediatric autoimmune neu-
ropsychiatric disorders associated with streptococci was
inhibited by lysoganglioside GM1 [48], and that lysoganglio-
side GM1-reactive mAb from Sydenham chorea patients
could also react with intracellular brain protein beta-tubulin
[49]. Animal models are scarce, but Hoffman et al. showed
that a subset of Swiss–Jackson Laboratory (SJL)/J mice
primed with S. pyogenes homogenate developed movement
and behavioural disorders [50]. These mice were found to
have antibody deposits in their brains and serum antibody
reactive to several regions of the brain.

Trypanosoma cruzi

Chagas disease is caused by infection with the protozoan
parasite T. cruzi [51,52]; 10–30% of infected individuals
develop the disease, which occurs in two major clinical
phases, acute and chronic. The acute phase is characterized
by parasitaemia, preferentially in heart muscle cells, and
inflammatory infiltration of infected tissue. This is followed
by an asymptomatic indeterminant phase, which can last
up to 30 years [53]. Patients who progress to the chronic
phase of the disease are affected mainly by irreversible
cardiomyopathy.
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Although it has been suggested that parasite persistence
can contribute to chronic Chagas disease cardiomyopathy
(CCC), T. cruzi antigens and DNA can also be detected in
infected people who remain asymptomatic [54–56]. This
suggests that the tissue destruction that characterizes this
phase may be largely autoimmune. CCC is characterized
histopathologically by mononuclear cell infiltrates, with
CD8+ T cells outnumbering CD4+ T cells 2:1. Local produc-
tion of interferon (IFN)-g, TNF-a, IL-4 and IL-6 has been
reported [57–59]. In addition, real-time polymerase chain
reaction (PCR) analysis showed selective up-regulation of
IFN-g-inducible chemokines and chemokine receptors in
CCC heart tissue [60]. Collectively, these data suggest that
bystander tissue destruction mediated by inflammatory
cytokines (especially IFN-g) may play a role in CCC
pathology. PBMC from CCC patients showed cytotoxicity
against non-infected cardiac myocytes [61] and cytokine
production against cardiac tissue homogenate [62,63], sug-
gesting that the cell-mediated damage can also be tissue-
specific. Antibodies to the cardiac protein Galectin-1 were
found in both the sera and cardiac tissue of CCC patients;
levels correlated with severity of cardiac damage, and inter-
estingly were absent in cardiomyopathies that were not
related to T. cruzi infection. There is also evidence for
molecular mimicry in CCC. The T. cruzi protein B13 was
found to elicit cross-reactive responses to cardiac myosin in
from both the humoral [64,65] and CD4+ T cell arms [66,67]
of the immune system. Furthermore, cross-reactive anti-
bodies were present in 100% of CCC patients but only 14%
of asymptomatic infected individuals [65].

Most of the animal studies of CCC utilize T. cruzi infec-
tion of mice as a model. In the C3H/HeJ strain, the heart
infiltrate of chronically infected mice is composed predomi-
nantly of CD8+ T cells that secrete IFN-g and TNF-a, which
mirrors well the histopathology in humans [68]. In other
strains, however, the CD4+ compartment is responsible for
the pathology. Chronically infected BALB/c or CBA mice
develop CD4+ T cells that proliferate in response to cardiac
myosin, but not cardiac actin [69]. Chronically infected
BALB/c mice rejected syngeneic newborn hearts unless
treated with anti-CD4 (but not anti-CD8) antibody [70]. A
CD4+ T cell line derived from chronically infected DBA/2
mice, cross-reactive with both cardiac and T. cruzi-derived
proteins, was able to cause intense heart inflammation when
transferred into infected or heart-immunized BALB/c nude
mice [71]. Girones et al. also published a study indicating
that T and B cell mimicry existed between murine and T.
cruzi-derived proteins. Here, they showed that T cells from T.
cruzi infected mice were reactive to both the SAPA antigen
on T. cruzi and the homologous, newly identified Cha
autoantigen [72]. Transfer of these T cells into naive mice
produced anti-Cha autoantibodies and heart lesions. Several
other studies have demonstrated cross-reactive antibodies
that recognize cardiac proteins such as myosin and T. cruzi
antigens [73–77].

Although the chronic phase usually affects the heart, a
subset of patients develop motor dysfunction of the gas-
trointestinal tract, essentially through the destruction of
neurones of the enteric nervous system [78]. It was discov-
ered that antibodies raised in rabbit against a flagellum-
associated surface protein on T. cruzi (FL-160) are cross-
reactive with a 48-kDa protein found exclusively in nervous
tissue [79]. It was then found that antibodies raised against
the amino terminus of FL-160 react to a different epitope on
mammalian sciatic nerve than antibodies raised against the
carboxyl terminus [80]. The medical relevance of this appar-
ent mimicry is uncertain, as the ability of human sera to
react to FL-160 did not correlate with clinical disease [81].
Other studies have also shown molecular similarity between
T. cruzi antigens and antigens from mammalian nervous
tissue [82,83].

Borrelia burgdorfeii

In the United States, Lyme disease is caused by the tick-borne
spirochete Borrelia burgdorfeii (Bb). Sixty per cent of
untreated patients develop arthritis that can last for several
years, mainly in large joints such as the knee [84]. These
patients have high titres of Bb-specific antibodies, and Bb
DNA can be detected in the joint fluid by PCR [85]. Treat-
ment of these patients with antibiotics usually ameliorates
the arthritis, which indicates that bystander inflammatory
response to the spirochete is responsible for early Lyme
arthritis [86]. A subset of patients will progress from acute to
chronic arthritis despite treatment with antibiotics and lack
of detectable Bb DNA in synovial fluid [85–87]. Antibiotic-
resistant Lyme arthritis is associated with the MHC class II
alleles human leucocyte antigen (HLA)-DRB1*0401, *0101
and *0404, indicating that its mechanism is T cell-mediated
and distinct from acute Lyme arthritis [88]. Cellular and
humoral responses to outer surface protein A (OspA) of Bb
develop in around 70% of patients with antibiotic-resistant
Lyme arthritis, often at the beginning of prolonged arthritic
episodes [89–92]. T cell and humoral responses to OspA, but
not to other spirochete antigens, were found to correlate
with the presence or severity of arthritis [92,93]. Specifically,
antibiotic-resistant patients responded preferentially to
the T cell epitope OspA165–173, and T cells responsive to this
epitope were expanded in the joint fluid compared with
peripheral blood in HLA-DRB1*0401-positive patients
[89,94,95]. An initial computer algorithm search identified
lymphocyte function-associated antigen (LFA)1aL332–340, a
peptide derived from the light chain of human leucocyte
adhesion molecule, as homologous to OspA165–173, and
able to bind HLA-DRB1*0401 [96]. Synovial fluid mono-
nuclear cells from patients with antibiotic-resistant arthritis
produced IFN-g in response to both OspA165–173 and
LFA1aL332–340, suggesting that mimicry between these two
proteins may cause the inflammation associated with
arthritis. LFA-1a has also been identified in the synovia of
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patients with antibiotic-resistant Lyme arthritis [97].
However, other studies showed that in treatment-resistant
patients, LFA1aL332–340 was a weak agonist for OspA165–173-
specific T cells and mainly induced the Th2-type cytokine
IL-13 [98]. LFA1aL332–340 binds well to HLA-DRB*0401, but
not to the more commonly associated allele HLA-
DRB1*0101 [99]. In addition, although cross-reactive T cells
were identified in the majority of patients in one study, there
was no correlation between T cell response to LFA1aL332–340

and clinical status [100]. These studies weaken the argument
that LFA1aL332–340 cross-reactivity is important in the pathol-
ogy of antibiotic-resistant Lyme arthritis. On the other hand,
Maier et al. identified 15 other human and murine self-
peptides that could stimulate an OspA165–173-specific T cell
hybridoma [101], so other peptides may prove to be more
important in disease pathology.

There are several rodent models in which arthritis is
induced upon infection with Bb [102–105]. In C3H mice,
joints are infiltrated with neutrophils 10–14 days after infec-
tion and, at the peak of arthritis (3–5 weeks), synovial lesions
show leucocyte infiltration with mononuclear cells [103].
C57BL/6-beige mice, which have impaired macrophage
motility and chemotaxis, develop severe arthritis [106],
whereas C57BL/6 mice develop minimal arthritis unless
deficient in IL-10 and IL-6 [107,108]. These studies indicate
that macrophage-derived anti-inflammatory cytokines pro-
tect these mice from severe joint inflammation. Transferring
Bb-specific T cells alone in the absence of B cells will exac-
erbate and accelerate the onset of arthritis in C57/BL6-SCID
mice [109]. Rodent models are helpful only in studying acute
Lyme arthritis, as the arthritis resolves within a few weeks
and is not antibiotic-resistant.

Neurological complications, including myelitis and
peripheral neuropathy, can occur in 10–12% of untreated
patients infected with Bb and can arise even after antibiotic
treatment [110]. Patients with chronic neuroborreliosis
have been reported to have antibodies reactive to nerve
axons in their serum [111], as well as antibodies and T cells
specific for myelin basic protein (MBP) in spinal fluid
[112,113]. Patient serum that was reactive to axons and
neuroblastoma cells was also cross-reactive with Bb flagellin
[111,114]. Next, it was discovered that a mAb for flagellin
was cross-reactive with human heat shock protein 60
and with neuroblastoma cell lines [115,116] and slowed
neurite outgrowth in culture [117]. Antibody cross-
reactivity has also been described between human central
nervous system (CNS) proteins and Bb OspA [118]. Several
host neural peptides were identified as cross-reactive with
Bb-specific T cells from CSF of a patient with chronic
neuroborreliosis using peptide libraries and biometric data
analysis [119]. However, studies such as those in non-
human primates suggest that bystander inflamma-
tory responses to the persistently infective pathogen may
explain more clearly the CNS complications of this disease
[120–122].

Herpes simplex virus

Herpetic stromal keratitis (HSK) is caused by corneal infec-
tion by herpes simplex virus (HSV) and can lead to blindness
[123,124]. Whereas progression from epithelial infection to
stromal keratitis is not prevented by anti-viral drugs, the
symptoms of HSK can be alleviated with immunosuppressive
drugs such as corticosteroids [125], indicating that HSK is an
autoimmune disease. Because of the difficulties associated
with studying the disease in humans, much of the character-
ization of HSK has utilized murine infection with HSV-1.
Within 72 h of infection proinflammatory cytokines IL-1 and
IL-6 are produced, which leads to influx of neutrophils into
the corneal stroma [126–129]. Significantly, SCID mice
reconstituted with CD4+ T cells and depleted of neutrophils
exhibit a lower incidence and severity of HSK [130]. Mac-
rophage and natural killer (NK) cell influx follows subse-
quently in the cornea and may contribute to disease
pathology directly or through the production of inflamma-
tory cytokines [131–134]. Starting around 10 days after infec-
tion, a second wave of infiltration occurs, consisting mainly of
neutrophils and CD4+ T cells, which is heavily dependent on
local production of IFN-g [135,136]. Interestingly, the peak of
HSK (day 14 post-infection) is 5–7 days after the infectious
virus is typically detectable, suggesting that HSK pathology
does not require the presence of the replicating virus
[137,138]. However, viral DNA has been detected 37 or more
days post-infection and could stimulate DCs and macroph-
ages to activate T cells through bystander activation or the
presentation of cryptic epitopes [139–141]. It was discovered
early on that CD4+ T cells were necessary for the development
of HSK [135,136], and molecular mimicry has been postu-
lated in addition to the mechanisms mentioned above.
Cornea-specific T cell clones that cross-reacted with an
epitope in the immunoglobulin (Ig)H locus (which was
shown to defer susceptibility to HSK) were also found to
recognize the HSV-1-derived protein UL6 [142,143]. Transfer
of these cross-reactive T cells induced HSK lesions in nude
mice, and HSV-1 viral mutants lacking the UL6 peptide did
not induce HSK lesions in susceptible mice. However, in other
studies employing a different susceptible mouse strain, infec-
tion failed to produce T cells reactive to either to UL6 or IgH
[142,143]. In addition, T cell lines isolated from the cornea of
HSK patients did not show reactivity to UL6 or other human
corneal antigens [144–146]. This suggests that, in humans, T
cells may cause pathology via bystander destruction.

Uveitis

Uveitis is a group of intra-ocular inflammatory diseases that
are potentially blinding [147]. It is believed that many sub-
groups of this disease are autoimmune-mediated, in part
because of the strong association with certain HLA alleles
[148]. Humoral and cellular responses to the retinal antigens
interphotoreceptor retinoid binding protein and S-antigen
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are well characterized in humans [149,150] and animal
models in rodents and primates (experimental autoimmune
uveitis, EAU) are based on injecting these proteins in com-
plete Freund’s adjuvant. Singh et al. identified a CD4+ T
cell epitope in human S-antigen and several virus and
Escherichia coli-derived peptides with sequence similarity
[151,152]. Clinical and histological manifestations typical of
EAU, including inflammatory infiltrates in affected eyes,
were seen in Lewis rats immunized with these mimics. In
addition, proliferation assays performed from lymph nodes
demonstrated cross-reactive responses between the mimics
and the retinal autoantigen. Starting with a different
S-antigen CD4+ T cell epitope, Wildner and Diedrichs-
Mohring found mimics derived from rotavirus and bovine
milk casein [153]. In the same study, patients with uveitis
were found to have an increased T cell and antibody response
to S-antigen and the two identified mimics compared with
healthy donors. Aside for a report of an outbreak of uveitis in
children after echovirus infection, no pathogen has yet to be
associated epidemiologically with uveitis [154].

Diabetes

Type I diabetes (T1D) results from autoimmune destruc-
tion of pancreatic cells by autoreactive T cells and/or
inflammatory cytokines. Although there is a definite
genetic component to T1D, the concordance rate in
monozygotic twins is only approximately 40% [155,156],
and epidemiological evidence suggests that pathogens play
a role in development. Many different viruses have been
associated with T1D development [157]. Studies showed a
higher incidence of T1D in people with congenital rubella
[158] and antibodies to pancreatic islet cells in rubella-
infected patients [159]. Similarly, cytomegalovirus (CMV)
was isolated from T1D patients [160] and antibodies to
pancreatic islet cells detected in CMV-infected patients
[161]. It was also noted that mumps infection often pre-
ceded the onset of T1D in children [162,163]. A convincing
study showed that CVB4 isolated from the pancreas of
acute-onset patients could induce diabetes upon transfer
into susceptible mice [163]. CVB4-specific IgM antibodies
could be detected in children newly diagnosed with T1D
[164,165]. There is some evidence that CVB4 may cause
T1D via molecular mimicry. T cells isolated from T1D
patients reacted with both glutamic acid decarboxylase
(GAD-65) (an identified autoantigen in T1D) and protein
2C in CVB4. However, another study did not observe
similar T cell cross-reactivity [166], and yet another showed
that cross-reactivity was observed in both diseased patients
and healthy controls [167]. In vitro studies suggest that
rubella virus may act by producing antibodies and CTLs
cross-reactive with islets [168,169]. There is also evidence
that CMV can induce cross-reactive antibodies and Th cells
[161,170]. In vitro studies showed that the mumps virus
could infect and replicate in human cell lines, induce the

release of IL-1 and IL-6 and up-regulate expression of
MHC class I and class II antigens [171–173]. As the virus
has also been shown to replicate in exocrine pancreas
[174], it is possible that cytokine release and HLA
up-regulation following mumps virus infection may lead to
autoimmunity.

The non-obese diabetic (NOD) mouse model develops
diabetes through the spontaneous destruction of pancreatic b
cells. Similar to human T1D, the T cell response to GAD-65
appears to be important in disease pathogenesis, and epitope
spreading may then result in responses to other autoantigens
such as insulin [175].Although in one study immunization of
NOD mice with the CVB4-derived 2C protein induced T cells
cross-reactive with GAD-65 (supporting the mimicry
hypothesis) [176], in another study CVB4 infection did not
induce cross-reactive T cells [177]. In a study where CVB4
accelerated the onset of diabetes, it was found that a threshold
level of b cell-specific T cells needed to already be present for
disease acceleration to occur [178]. Thus, bystander activa-
tion may be a more likely explanation than molecular
mimicry in the NOD model. BDC2·5 mice are transgenic for
a diabetogenic TCR. These mice develop diabetes similar to
that seen following CVB4 infection after treatment with
streptozotocin (which damages the pancreas) but not after
treatment with poly I:C (a Toll-like receptor-3 agonist). This
suggests that in this model, the release of cryptic antigens
following viral infection may be the mechanism of diabetes
induction [179]. Infecting diabetes-resistant BB (DR-BB) rats
with Kilham’s rat virus (KRV) induces diabetes in about 30%
of these animals and insulitis without diabetes in an addi-
tional 30% [180]. Interestingly, unlike CVB4 in mice, KRV is
not trophic for the pancreas but rather for lymphoid organs
such as the spleen, thymus and lymph nodes. It is not very well
understood how this virus causes diabetes without infecting b
cells, but inactivating macrophages prevents diabetes in KRV-
infected DR-BB rats [181]. There are also data that the virus
may trigger previously quiescent b cell-specific T cells in
DR-BB rats [182]. Finally, CVB4 was found to produce abnor-
malities in glucose tolerance tests and impaired insulin secre-
tion in patas monkeys [183].

Guillain–Barré syndrome

Guillain–Barré syndrome (GBS) is a paralytic illness affect-
ing both myelin and axons of the peripheral nervous system
[184]. Several studies have demonstrated anti-glycolipid
antibodies in the serum of a proportion of patients [185].
There are different clinical variants of the disease, which can
correlate with the specific type of glycolipid targeted by the
antibodies. Glycolipids found most commonly in neural
tissues include the gangliosides and cerebrosides. Onset of
GBS occurs days or weeks following an infection or immu-
nization [186]. Although several microorganisms have been
associated with GBS development, Campylobacter jejuni is
the most extensively studied pathogen as it is a common
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antecedent to GBS. In addition, there is mounting evidence
suggesting that lipopolysaccharide (LPS) on the outer core of
the bacteria can mimic host gangliosides. LPS from C. jejuni
serotypes associated with GBS were shown to resemble
human gangliosides structurally [187,188], and priming of
mice, rats and rabbits with the above-mentioned LPS pro-
duced corresponding anti-ganglioside antibodies [189–191].
Several studies have shown that C. jejuni serotypes associated
with GBS are more likely to contain ganglioside-like epitopes
compared with serotypes isolated from C. jejuni-infected
patients with gastroenteritis but no neurological symptoms,
with one study linking ganglioside mimicry to specific
GBS clinical subtypes [192,193]. Furthermore, Yuki et al.
reported that rabbits immunized with C. jejuni LPS devel-
oped flaccid limb weakness that was associated with antibod-
ies to the ganglioside GM1 and peripheral nerve pathology
identical to that seen in GBS [194].

Patients infected with Mycoplasma pneumoniae prior
to the development of GBS often have antibodies to
galactocerebroside. These antibodies can cross-react with
glycolipids on M. pneumoniae [195,196]. Associated anti-
bodies to GM1 have also been reported [197]. Similar to
what occurs following C. jejuni infection, patients infected
with Haemophilus influenzae can develop antibodies to bac-
terial LPS that are cross-reactive with ganglioside [198]. The
presence of a ganglioside-like structure on the surface of H.
influenzae suggests that molecular mimicry may explain its
association with GBS induction [199,200].

Multiple sclerosis

Multiple sclerosis (MS) is characterized by a loss of the
myelin sheath surrounding axons in the CNS [201]. Demy-
elination is associated with elevated levels of CD4+ T cells
specific for major myelin proteins, and the disease is gener-
ally thought to be autoimmune [202–204]. Although it is not
known precisely what triggers the development of MS, it is
well established that relapses or disease flares in patients
diagnosed with the relapsing–remitting form of MS are often
associated with exogenous infections, particular upper res-
piratory infections. In total, more than 24 viral agents have
been linked to MS [205,206]. Most of the associations have
been circumstantial, but some studies have found evidence
of specific pathogens in human tissue. Antigens from herp-
esvirus type 6 were found in MS plaques but not from tissues
from other neurological disorders [207]. Similarly, com-
pared with CSF from patients with other neurological dis-
eases, CSF from MS patients was shown to have higher levels
of the bacteria Chlamydia pneumoniae [208]. In vitro studies
have also provided evidence linking MS and infectious
agents. MS patients have activated T cells specific for MBP
[209–211]. Eight pathogen-derived peptides, including
epitopes from HSV, adenovirus and human papillomavirus,
were identified that are able to activate MBP-specific T cell
clones derived from MS patients [212]. Significantly, these

peptides were found to be presented most efficiently by sub-
types of HLA-DR2 that are associated with susceptibility to
MS. Despite the difficulty in linking MS to any one pathogen,
the amount of epidemiological evidence reported over the
years shows that environmental factors play a strong role in
disease development, and suggests that a cumulative lifetime
exposure to certain microorganisms can influence disease
development [213–216]. In addition, a recent study showed
that the degree of concordance for monozygotic twins (gen-
erally reported at 40% or less) was influenced by environ-
mental factors [217].

There are numerous rodent models of demyelination
which, although not identical to the human disease, are used
to study MS. The major infectious models in mice are Theil-
er’s murine encephalomyelitis virus (TMEV), murine hepa-
titis virus (MHV) and Semliki Forest virus (SFV). Each has
distinct immunopathological mechanisms and illustrate the
various potential ways pathogens may induce MS. There are
two strains of TMEV (TMEV-DA and TMEV-BeAn) which
cause an initial acute grey matter disease followed by a
chronic progressive demyelination in the white matter of
the spinal chord known as TMEV-induced demyelinating
disease (TMEV-IDD) [205,218,219]. Although the two
strains induce slightly different diseases, the key characteris-
tics of TMEV-IDD (abnormal gait and spastic hindlimb
paralysis) remain the same. Intracerebral (i.c.) injection of
virus leads to persistent CNS infection; the level of infectious
virus is low during the chronic phase, but abundant amounts
of viral RNA and viral antigen can be detected throughout
the lifetime of the mouse [220–222]. The immune response is
initiated by the presentation of persistent viral antigens by
CNS-resident APCs to Th1-type CD4+ T cells, but reactivity
to myelin does not appear until after the onset of clinical
symptoms (30–35 days post-infection) [223–226]. Thus,
TMEV-IDD is caused by epitope spreading from viral deter-
minants to self-myelin determinants. Interestingly, in SJL
mice, reactivity appears to multiple myelin peptides starting
with the immunodominant epitope and spreading at later
time-points to other subdominant myelin determinants in a
hierarchical manner [226,227]. In contrast to TMEV, mice
inoculated with neurotropic strains of MHV will have a
single major symptomatic episode (ataxia, hindlimb paresis,
paralysis) from which the majority will recover [228]. CNS
infection results in an influx of immune cells that for the
most part will clear the virus, although virus does persist in
low amounts [229]. Demyelination begins about 1 week
post-infection and peaks at week 3, after which lesion repair
and remyelination generally occurs [230–232]. The exact
mechanism of demyelination in this model is somewhat con-
troversial, but appears to be bystander myelin destruction by
the immune response recruited initially to the CNS to control
viral infection. There is no evidence of self-specific immunity
in the CNS of MHV-infected mice [233]. T and B-cell defi-
cient RAG1-/- mice, which were resistant to demyelination,
developed histological disease after adoptive transfer with
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splenoctyes from MHV-inoculated mice, which involved the
recruitment of activated macrophages/microglia to sites of
demyelination in the spinal cord [234]. Chemokine receptor
knock-out mice (CCR5-/-) showed reduced demyelination
that correlated with reduced macrophage but not T cell infil-
tration into the CNS of MHV-infected mice [235]. CD4-
deficient mice showed less severe disease than CD8-deficient
mice [236,237]. Collectively, these studies suggest that mac-
rophages are responsible primarily for myelin destruction in
the MHV model, but that T cells are required to recruit
macrophages into the CNS. Like MHV, SFV leads to a tran-
sient clinical disease [238,239]. The virus is, for the most part,
cleared from the CNS by day 6 post-infection, while demy-
elination peaks at day 14 and then wanes [240,241]. Demy-
elination is not seen in nude or SCID mice, demonstrating
that it is T cell-mediated [240,242]. In BALB/c mice it is
thought that demyelination is due to cytolytic damage of
virus-infected oligodendrocytes, although this has not been
proved definitively. Depletion of CD8+ T cells virtually abol-
ished lesions of demyelination, whereas depletion of CD4+ T
cells did not have that effect [243]. Other studies in BALB/c
mice have shown that Th1-type cytokines are involved in
viral clearance but not demyelination [244,245]. In C57/Bl6
mice, molecular mimicry may also play a role in demyelina-
tion. Infected mice have MBP-reactive T cells [246], and
antibodies reactive to MBP and myelin oligodendrocyte
protein (MOG) [247]. Computer algorithms uncovered
homology between an epitope in the SFV surface protein E2
and MOG18–32 [248]. Mice primed with either peptide
develop paralytic symptoms with histopathology resembling
that of mice infected with SFV. The authors of that study
concluded that the cross-reactive antibody response was
mainly responsible for the demyelinating lesions.

Summary and perspectives

The immune system has evolved checks and balances to
prevent the destruction of host tissue. It is perhaps not sur-
prising that a strong immune response to an invading patho-
gen could disrupt this regulation and lead to autoimmunity.
As outlined above, there is significant evidence suggesting
that different classes of pathogens (bacteria, viruses and
parasites) are involved in triggering or propagating self-
reactive immune responses. However, the evidence for a
definitive link for infection-induced autoimmunity is stron-
ger for certain diseases than for others.

The argument for infection-induced pathology is much
stronger for diseases associated with one or two specific
pathogens than for diseases with multiple causal asso-
ciations. For example, the fact that infection with C. jejuni is
a common antecedent to GBS makes a strong argument that
this disease is infection-triggered. In contrast, for diseases
such as TID and MS that have been associated with dozens of
pathogens, but none in particular, much more needs to be
done to make a convincing case. The most compelling proof

would be the disappearance of symptoms with the clearance
of the infection. This is the case in Lyme disease, where
treatment with antibiotics alleviates acute arthritis. However,
as outlined previously in this paper, there are many ways a
pathogen can cause disease even after the infection has been
cleared. In these cases, epidemiological studies showing that
people infected with a particular agent have an increased
incidence of these diseases compared with people never
infected, while not wholly definitive, would certainly
strengthen the infection-induced autoimmunity argument.

In human autoimmune diseases, where direct evidence for
a role for a particular pathogen is weak, it is all the more
important to have supporting animal models. The strongest
support comes from animal models in which infection with
the agent thought to induce disease in humans causes similar
symptoms in animals, as exemplified by induction of heart
disease in mice infected with T. cruzi and CVB and arthritis
in mice infected with Bb. In other animal models, disease can
be shown to be induced by priming with a pathogen-derived
antigen, thus strengthening the argument for the involve-
ment of that pathogen in the human disease. The ability to
induce heart disease in rats primed with Streptococcal M
protein is strong evidence that S. pyogenes causes heart
disease in humans via molecular mimicry. Although the link
between S. pyogenes infection and neurological disorders in
humans is uncertain, at best, the fact that movement and
behaviour disorders can be induced in mice primed with S.
pyogenes homogenate also lends credibility to that theory. In
cases where it is uncertain whether a disease pathology is
actually autoimmune (such as uveitis and myocarditis fol-
lowing CVB infection), animal models have played a crucial
role in elucidating the potential mechanisms of disease
induction.

The heterogeneity of the human population, rather than
the weakness of the data, may be in play in instances where
the evidence linking infection and autoimmunity is tenuous
or even conflicting. It is not difficult to imagine that some
people may be more susceptible to developing autoimmune
disease following a particular infection than others, or that
mimic peptides derived from different infectious agents may
be able to trigger a particular autoimmune disease depend-
ing on the ability of the infected individual to present various
epitopes in the context of their various HLA molecules.
Defining the genetic markers that predispose patients to
different autoimmune diseases with a suspected infectious
trigger would be an important contribution to defining the
underlying disease pathogenesis.
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